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The antiinflammatory activities of the isolated flavonoids, including cycloartomunin (1), cyclomorusin
(2), dihydrocycloartomunin (3), dihydroisocycloartomunin (4), cudraflavone A (5), cyclocommunin (6),
and artomunoxanthone (7), and cycloheterohyllin (8), artonins A (9) and B (10), artocarpanone (11),
artocarpanone A (12), and heteroflavanones A (13), B (14), and C (15) from Artocarpus communis
and A. heterophyllus, were assessed in vitro by determining their inhibitory effects on the chemical
mediators released from mast cells, neutrophils, and macrophages. Compound 4 significantly inhibited
the release of â-glucuronidase and histamine from rat peritoneal mast cells stimulated with P-methoxy-
N-methylphenethylamine (compound 48/80). Compound 11 significantly inhibited the release of
lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP). Compounds 8, 10, and
11 significantly inhibited superoxide anion formation in fMLP-stimulated rat neutrophils while
compounds 2, 3, 5, and 6 evoked the stimulation of superoxide anion generation. Compound 11
exhibited significant inhibitory effect on NO production and iNOS protein expression in RAW 264.7
cells. The potent inhibitory effect of compound 11 on NO production in lipopolysaccharide (LPS)-
activated macrophages, probably through the suppression of iNOS protein expression.
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INTRODUCTION

The plants ofArtocarpusspecies distribute over the tropical
and subtropical regions and have been used as traditional folk
medicine in Indonesia against inflammation and malarial fever
(1). In the previous papers the characterization of prenyl-
flavonoids of Artocarpus communis(A. communis) and A.
heterophyllus(2-7) and antiinflammatory, cytotoxic, antiplate-
let, and scavenger and antioxidant properties of prenylflavonoids
isolated from FormosanArtocarpus plants were reported
(8-12). Mast cells play a central role in the pathogenesis of
diseases such as allergic asthma, rhinoconjunctivitis, urticaria,
anaphylaxis, and systemic mastocytosis and may well be
important players in other chronic inflammatory disorders (13).
The neutrophil is an important inflammatory cell. It can be
triggered by a variety of inflammatory stimuli to produce highly
reactive oxygen species which have potent microbicidal and
inflammatory effects (13). Macrophages are important in
nonspecific host resistance to microbial pathogens and serve

as central regulators of the specific immune response (14). Upon
activation, nitric oxide (NO), together with other chemical
mediators, is released in response to bacterial endotoxin (LPS)
(15). NO plays a central role in macrophage-induced cytotox-
icity; however, excess NO may contribute to the pathophysi-
ology of septic shock (16). The excess production of NO also
can destroy functional normal tissues during acute and chronic
inflammation (17). Hence, compounds with potent inhibition
of chemical mediators released from mast cells, neutrophils, and
macrophages would suggest a promising antiinflammatory agent.
Continuing our screening for bioactive compounds as inhibitors
of chemical mediators released from mast cells, neutrophils, and
macrophages, the antiinflammatory effects of compounds1-15
(Figure 1) (2-7) were examined.

MATERIALS AND METHODS

General Procedures.Optical rotations were obtained on a JASCO
model DIP-370 digital polarimeter. UV spectra were obtained on a
JASCO model UV-vis spectrophotometer. IR spectra were recorded
on a Hitachi model 260-30 spectrophotometer.1H (400 MHz) and13C
NMR (100 MHz) spectra were recorded on a Varian Unity-400
spectrometer. MS were obtained on a JMS-HX100 mass spectrometer.

Chemicals. Compound 48/80, histamine, formyl-Met-Leu-Phe-
(fMLP), mepacrine, trifluoperazine, heparin, bovine serum albumin,
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phenolphthalein-â-D-GLUCURONIDASE, O-phthadialdehyde, cytochrome
c, superoxide dismutase (typeΙ, from bovine liver), bacterial LPS
(Escherichia coli, serotype 0111: B4), and L-NAME were obtained
from Sigma, St. Louis, MO. Hanks’ balanced salt solution (HBSS) was
obtained from Gibco Lab, Grand Island, NY. Dextran T 500 was
purchased from pharmacia LKB, Taipei, Taiwan. Dimethyl sulfoxide
(DMSO) was obtained from Merck, Taiwan. All culture reagents were
obtained from Gibco BRL. Rabbit monoclonal anti-iNOS antibody was
obtained from Santa Cruz Biotechechnology.

Plant Materials, Extraction, and Isolation. These items are
described as those of previous reports (2-7).

Compound Identification of Cycloartomunin (1), Dihydrocy-
cloartomunin (3), Dihydroisocycloartomunin (4), Cyclocommunin
(6), Artomunoxanthone (7), Artocarpanone A (12), and Hetero-
flavanones A (13), B (14), and C (15).The physical and spectral data
of these compounds have been described in previous reports (2-7).

Cyclomorusin(2) was obtained as yellow needles: mp 246-248°C;
[R] 25

D ) +3° (CHCl3, c, 0.016); UV (MeOH)λmax 220, 255, 280, and

380 nm; IRνKBr
max (cm-1) 3400, 1640, 1600;1H NMR (400 MHz,

(CD3)2CO), Table S1 (Supporting Information);13C NMR (100 MHz,
(CD3)2CO), Table S1 (Supporting Information); EIMS m/z 418 [Μ]+,
403 [Μ - 15]+, 385, 363, 347, 203, 194, 174.

CudraflaVone A (5) was obtained as yellow needles: mp 270-
272 °C; [R]D

25 ) +338° (CHCl3, c, 0.06); UV (MeOH)λmax 210, 260,
290, and 360 nm; IRνmax

KBr (cm-1) 3450, 1640, 1580;1H NMR
(400 MHz, CDCl3), Table S1 (Supporting Information);13C NMR
(100 MHz, CDCl3), Table S1 (Supporting Information); EIMSm/z418
[Μ]+, 403, 363, 347, 203, 194, 174.

Cycloheterophyllin (8)was obtained as yellow needles: mp 220°C;
[R]D

23 ) -2° (acetone,c, 0.1); UV (MeOH)λmax 205, 231 (sh), 270,
300, 400 nm; IRνmax

KBr (cm-1) 3400, 1650, 1625, 1590;1H NMR
(400 MHz, (CD3)2CO), Table S1 (Supporting Information);13C NMR
(100 MHz, (CD3)2CO), Table S1 (Supporting Information); EIMSm/z
502 [Μ]+, 487, 459, 448, 447, 431, 403, 236, 205, 189, 153, 69, 55,
43.

Artonin A (9) was obtained as yellow powders: [R]D
23 ) -6°

(acetone,c, 0.1); UV (MeOH)λmax 210, 240 (sh), 295, 383 nm; IR
νmax

KBr (cm-1) 3570, 1655, 1610;1H NMR (400 MHz, (CD3)2CO), Table
S1 (Supporting Information);13C NMR (100 MHz, (CD3)2CO), Table
S1 (Supporting Information); EIMSm/z502 [Μ]+, 487, 460, 459, 448,
447, 446, 431, 403, 388, 251, 215, 43.

Artonin B (10) was obtained as yellow needles: mp 202-204 °C;
[R]D

22 ) -4° (acetone,c, 0.1); UV (MeOH)λmax 211, 237 (sh), 368,
394 nm; IR νmax

KBr (cm-1) 3500, 1655, 1610;1H NMR (400 MHz,
(CD3)2CO), Table S1 (Supporting Information);13C NMR (100 MHz,
(CD3)2CO), Table S1 (Supporting Information); EIMSm/z502 [Μ]+,
487, 459, 447, 446, 417, 403, 388, 215, 189, 165, 69, 43.

Artocarpanone (11)was obtained as colorless needles: mp 220-
212 °C; [R]D

24 ) -2° (acetone,c, 0.2); UV (MeOH)λmax 206, 227,
285, 327 (sh) nm; IRνmax

KBr (cm-1) 3450, 1640, 1615;1H NMR
(400 MHz, (CD3)2CO), Table S1 (Supporting Information);13C NMR
(100 MHz, (CD3)2CO), Table S1 (Supporting Information).

The above data of2, 5, and8-11 were consistent with those of
reported data in the literature (18-22). The purity (>95%) of
compounds, used for antiinflammatory tests, was determined by high-
performance liquid chromatography (HPLC).

Biological Evaluation.Compound stock solution (30 mM in DMSO)
was prepared and stored at-25 °C, and was diluted with DMSO to
1-20 mM range at room temperature before experiment. The final
percentage of DMSO in the reaction mixture was less than 0.5% (v/v).
Rat (Sprague Dawley) peritoneal mast cells (23) and peripheral blood
neutrophils (24) were isolated and incubated with test compounds for
5 min at 37°C before stimulation with 10µg/mL of compound 48/80
for another 15 min or with 1µM formyl-Met-Leu-Phe (fMLP) for
another 45 min, respectively. The degranulation of mast cells and
neutrophils was assessed by the determination of histamine and
â-glucuronidase, andâ-glucuronidase and lysozyme, respectively, in
the supernatant (23, 25). The total content of lysozyme andâ-glucu-
ronidase was measured from the Triton X-100 treated cells. In the
superoxide anion generation experiments, neutrophils were stimulated
with 0.3 µM fMLP/CB for 30 min in the presence of cytochromec,
and the superoxide anion generation was measured in terms of
superoxide dismutase-inhibitable cytochromec reduction (26,27).
Murine macrophage-like cell line RAW 264.7 cells were plated in a
96-well plate and incubated with test compounds for 1 h at 37°C before
stimulation with 1µg/mL of lipopolysaccharide (LPS) for 24 h. NO in
the cell medium was determined by the Griess reaction (28). In Western
blot analysis, cells were washed with PBS twice and harvested in
Laemmli SDS sample buffer. Cell lysates were separated by 10% SDS-
PAGE, and electrophoretically transferred to poly(vinylidene difluoride)
membranes. Membranes were blocked for 1 h atroom temperature in
TBST buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 0.1%
Tween 20) containing 5% nonfat milk. Membranes were washed with
TBST buffer and then incubated for 1 h with a monoclonal anti-iNOS
antibody (1:1000 dilution). Following the wash with TBST buffer,
horseradish peroxidase-labeled anti-mouse IgG (1:10000 dilution) was
added at room temperature for 1 h. The blots were developed using
ECL Western blotting reagents.

Figure 1. Structures of flavonoids isolated from Artocarpus communis
and Artocarpus Heterophgllus.
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Statistical Analysis.Data are presented as the mean( sem (standard
error of the mean) from four to six separated experiments. Statistical
analyses were performed using the Bonferronit-test method after
ANOVA for multigroup comparison and the Student’st-test method
for two-group comparison.P ) 0.05 was considered significant.
Analysis of linear regression (at least three data within 20-80%
inhibition) was used to calculate IC50 values.

RESULTS AND DISCUSSION

The antiinflammatory activities of compounds1-15 were
studied in vitro on the basis of their effects on chemical
mediators released from mast cells, neutrophils, and macro-
phages. Compound4 significantly inhibited the release of
â-glucuronidase and histamine from peritoneal mast cells
stimulated with compound 48/80 in a concentration-dependent
manner, while the other compounds did not reveal significant
inhibitory effect on this response (Table 1). fMLP induced the
release ofâ-glucuronidase and lysozyme from rat neutrophils.
Compound11 indicated significant and concentration-dependent
inhibition of the release of lysozyme stimulated with fMLP,
while the other compounds did not show significant inhibitory
effect on this response (Table 1). fMLP also stimulated
superoxide anion formation in rat neutrophils. Compounds8,
10, and11 showed significant and concentration-dependent
inhibition of superoxide anion formation (Table 1). The sup-
pression of protein kinase C (PKC) activity through the
interaction with the regulatory region of PKC is involved in
the inhibition of the superoxide anion generation by compound
8 in rat neutrophils (12). Compounds10, a pyranodihydro-
xanthone, and11, a flavanone, with different chemical structures
from 8, a prenylflavonoid, may have a different mechanism of
action on the inhibition of superoxide anion generation in rat
neutrophils.

As compared with the compounds shown above, compound
6 did not show significant inhibitory effect on superoxide anion
formation in rat neutrophils stimulated with fMLP (Table 1);
however, it induced a respiratory burst in rat neutrophils (27).
The stimulation of respiratory burst by6 is probably mediated
by the synergism of PKC activation and [Ca2+] i elevation in
rat neutrophils (27). As shown in Table 2, addition of2, 3, 5,

and6, like fMLP, into neutrophils suspensions evoked super-
oxide anion generation with the maximum effect at 90µM for
2, 3, and5 and 30µM for 6. The stimulation of superoxide
anion generation by6 reconciles with the previous report (23).
The prenylflavonoids,2, 3, 5, and6 may induce respiratory burst
through the same mechanism of action as that of6. Further
experiments are needed to elucidate their exact mechanism of
action. The antiinflammatory activities of11-15 were also
studied in vitro on the basis of their inhibitory effects on
chemical mediator released from macrophages. Treatment of
RAW 264.7 macrophage-like cells with LPS (1µg/mL) for
24 h induced NO production as assessed by measuring the
accumulation of nitrite, a stable metabolite of NO, in the media
based on Griess reaction. As shown in Table 3 and Figure 2,
LPS induced a significant increase of NO production, and this
effect was concentration-dependently suppressed by11. The
O-methylated at C-4′-OH (i.e. 12) of 11 did not enhance the
inhibitory effect on NO production. It indicates that the11
increased in lipophilicity byO-methylation did not enhance the
inhibitory effect on NO production. To determine whether the
inhibition of NO production in RAW 264.7 cells is attributable
to the decrease of iNOS protein expression, Western blot
analysis was performed. Unstimulated cell expressed a very low
level of iNOS protein, whereas LPS (1µg/mL) induced a large

Table 1. Inhibitory Effects of 1−15 on the Release of â-Glucuronidase and Histamine from Rat Peritoneal Mast Cells Stimulated with Compound
48/80 (A), the Release of â-Glucuronidase and Lysozyme from Rat Neutrophils Stimulated with fMLP (B), and Superoxide Anion Formation from Rat
Neutrophils Stimulated with fMLP (C)

IC50
a (µM)

A B C

compnd â-glucuronidase histamine â-glucuronidase lysozyme n mol/(106 cells)

1 >90 (4.6 ± 7.6) >90 (11.2 ± 2.2) >90 (−3.5 ± 5.0) >90 (−43.9 ± 5.3) ND
2 >3 (16.9 ± 12.5) >3 (6.1 ± 2.4) >3 (−2.7 ± 4.6) >3 (−40.2 ± 10.2) ND
3 >30 (5.3 ± 13.0) >30 (11.2 ± 8.6) >30 (13.2 ± 4.4) >30 (−7.1 ± 8.3) ND
4 72.6 ± 2.5 70.2 ± 3.2 >90 (0.9 ± 8.4) >90 (6.6 ± 9.2) >30 (−30.5 ± 5.8)
5 >3 (16.0 ± 1.4) >3 (17.3 ± 1.0) >3 (−10.7 ± 3.2) >3 (−41.3 ± 11.2) ND
6 >3 (16.0 ± 6.7) >3 (14.1 ± 4.8) >3 (−12.3 ± 3.2) >3 (−35.2 ± 15.6) ND
7 >90 (61.5 ± 9.9) ND >90 (21.6 ± 3.1) >90 (36.8 ± 6.6) >90 (15.3 ± 8.1)
8 >9 (48.8 ± 5.4) >9 (35.0 ± 2.7) >9 (5.3 ± 10.8) >9 (−1.5 ± 13.5) 8.4 ± 1.2
9 >3 (−20.4 ± 15.4) >3 (−24.7 ± 8.1) >9 (−4.7 ± 9.8) >9 (−19.1 ± 8.5) >90 (−80.7 ± 6.4)
10 >9 (2.3 ± 4.1) >9 (5.4 ± 15.9) >30 (−57.7 ± 5.9) >30 (−67.0 ± 1.0) 52.2 ± 17.4
11 >90 (−30.3 ± 7.6) >90 (2.7 ± 15.8) >30 (36.0 ± 11.7) 46.5 ± 5.1 19.8 ± 1.5
12 ND ND ND ND ND
13 >90 (−10.9 ± 10.8) >90 (−3.9 ± 1.8) >90 (9.2 ± 4.5) >90 (4.6 ± 9.1) >90 (14.9 ± 8.9)
14 >90 (−12.2 ± 10.1) >90 (2.4 ± 4.2) >90 (0.2 ± 0.9) >90 (5.0 ± 1.1) >90 (34.1 ± 7.7)
15 >30 (7.8 ± 3.2) >30 (−8.4 ± 6.3) >30 (5.9 ± 9.1) >30 (4.7 ± 3.7) >90 (46.9 ± 0.9)
positive controlb 32.2 ± 3.6 48.5 ± 3.8 7.8 ± 0.6 9.0 ± 1.4 14.8 ± 1.7

a When 50% inhibition could not be reached at the highest concentration, the percentage of inhibition is given in parentheses. Data are presented as the mean ± sem
(n ) 3−5). ND: not determined. b Mepacrine and trifluoperazine were used as positive controls for A−C, respectively.

Table 2. Effects of Compounds on Superoxide Anion Generation in
Rat Neutrophilsa

compd (concn (µM)) superoxide formation (nmol)

fMLP (0.3) 1.78 ± 0.14
1 (30) 0.54 ± 0.32
(90) 0.02 ± 0.25
2 (30) 2.16 ± 0.02
(90) 4.18 ± 0.34
3 (30) 6.22 ± 1.68
(90) 6.70 ± 2.71
5 (30) 2.89 ± 0.86
(90) 3.87 ± 1.07
6 (30) 14.33 ± 0.31
(90) 12.98 ± 0.86

a Data are presented as means ± sem (n ) 3−5). fMLP was used as a positive
control.
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amount of iNOS protein expression (Figure 2). Compound11
inhibited the iNOS protein expression in a concentration-
dependent manner. Thus, the blockade of iNOS expression has
a critical role as evidenced from the parallelism of the inhibition
of NO production and iNOS protein expression by11.

The present study verifies that4, 8, 10, and11exert inhibitory
effects on the release of chemical mediators from inflammatory
cells. NO plays a central role in macrophage-induced cyto-
toxicity and has been demonstrated to implicate in the pathology
of central neurologic diseases and also in the peripheral tissue
damage associated with acute and chronic inflammation
(29,30) and septic shock (16). The present study also suggests
that the inhibition of NO production by11 in macrophages may
have value in the therapeutic treatment or prevention of certain
central as well as peripheral inflammatory diseases associated
with the increase of NO production. Further experiments are
needed to elucidate in vivo their antiinflammatory activities.
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